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In the usual deduction of the equations of propagation of electric

waves along wires the notion of the electric constants per unit length

is introduced. While there is no difficulty involved in this as far as

resistance and leakage are concerned, the legitimacy of the extension

of this notion to self-induction and capacity is not obvious. In order

to determine the exact meaning to be attached to these terms it is

convenient to consider a line in which the electric properties are

localized in a finite number of coils, condensers and leaks, joined

by ideal conductors of no resistance, self-induction and capacity.

For the special case of long electric waves the solution can readily

be obtained by means of the calculus of finite differences. On pass-

ing to the limit, by letting the number of coils, etc., increase indefi-

nitely while their electric constants decrease indefinitely, the equa-

tions of propagation and their solution for a uniform line are at once

obtained. There appears to be a considerable advantage in the use

of this method in respect to its simplicity, particularly where the

terminal conditions are at all complicated. Two problems are

worked out in this paper; the first that of the free vibrations of a

line earthed at both ends, and the second that of the forced vibra-

tions when a periodic impressed electromotive force is applied to the

circuit.

Consider a lint- of length /. in which are inserted at equal inter

vals n coils each of resistance A" and self-induction /.. At points

between each pair <»i" coil- one plate of a condenser of capacity S" is

connected, the other plate being earthed; and at the same points

..nth, each "i' conductance K'
t

are introduced. The cur-

rent in the feth coil i
1
- (',, and the potential at a point between the



«9io.j LONGELECTRIC WAVESALONGWIRES. 365

coils k and k -f- I is V%. For the first problem we then have

Vo := Vn = o. Let L 1 be the coefficient of mutual induction between

any coil and one of its nearest neighbors ; L
2

the coefficient of mutual

induction between the same coil and its next nearest neighbor but

one, and so on. Similarly, let 5\ be the electric induction coefficient

between any condenser and one of its nearest neighbors ;
5"

2 the in-

duction coefficient between two alternate condensers, etc. We can

then write for the fcth coil

:

K-, -K= iUc k + A c
h_

x + a cMdt \ (i)

+ A^- 2 + AQ. +2 +---)+ xc
h

and for the £th condenser

:

C —C = ( SV + S V + S V
(2)

+ St
Vh_ t + S

t
VM+ -) + KV

k

Now in the case of long electric waves the currents in any coil

and its near neighbors will be very nearly the same. The terms in

the series in (1) containing currents in distant coils become rela-

tively unimportant on account of the diminution of their coefficients.

In this special case it will therefore be legitimate to replace the series

by a single term and we can therefore write

:

V
k
^-V, = L'^C

k + R'C
k , (3)

in which L' may be termed the effective coefficient of self-induction

of any one of the coils. When we pass to the limit by increasing

indefinitely the number of coils, etc., and at the same time decreasing

indefinitely all the electric constants, the limiting value which the

product of L' by the number of coils in a unit length approaches will

be the self-induction per unit length of the uniform line. Equation

(2) modified in an analogous manner reduces to:

C
k
-C, + l

= S'^V
k

^-K'V
k (4)
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Subtracting the equation for the coil k -\- I from (3) and substi-

tuting from (4), we get:

Vk . 1
-(2-{-h)V k +Vk+1 = o

> (5)

where

h = R'K' —L'S'p 2 + ip (L'K' + R'S'), (6)

in which it is assumed that the potentials and currents all vary as

eipt
- (5) is a linear difference equation of the second order. By

the usual method we put

and find

:

2 + h
, ,

a = —̂—^ h VAh + //
2

• (7)

Let these two values be a and /?, the former with the positive sign

of the radical. In general a and /? are different, and so we get the

two distinct solutions required by an equation of the second order.

But for /i = o or /* =—4 a and /? have the same values. The com-

plete solution of (5) is therefore:

v
k
= (A, + B

x
ky* + (a

2 + Bjky* + {a
3 + B

z
k)(~ iyw

+ (a
4 + B

K
k)(- if/** + Z(^y + B

t fi
k y>".

Since V = Vn = o, whatever t, A1
= A2

= A3
= A i

= B
1
= B2

= Ba = Bt = o; Ap-\-B p = o and

Let now

(7) reduces to

and (8) gives

a n —p n = o. / (8)

h =—4sin 2
0, (9)

a,{J = cos2$± t sin 20, (10)

e= -, (n)

where m ii any integer. »' <> and m= n arc excluded because

give //— O and /t =—4. which arc already disposed of. If

we take m= n-f-I, H-f-2, etc., we get the same series Of values
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obtained from m= i to m= n —I . We thus get

:

"•Sir 1

A ktmr . , , .

V, = Y\ A sin *«"»'. (12)

Am and /> m are complex quantities. Writing p m= pm + ipm" , we get

from (6), (9) and (10) :

2
7«7T

/f > 4Sm
2* (L'IC-RSy (13)

p"= Jra —= /'. (14)

p m" is thus independent of m. The real part of (12) may now be

written

w—

1

klfflt

V
h
= e-*"> £ Am cos (/> m7 -

</>J
sin —

, (15)

where Am and <£,„ are new arbitrary real constants.

The currents in the several coils may be obtained from (3) com-

bined with (12 ). Taking the real part we find

"- 1 mir
C, ='-*'" Z Bm cos

( A,

[t - +J cos (2 A - 1 )
— (16)

where Bm and i/^ are known in terms of Am and <£,„ in (15).

The last four equations give the complete solution of the problem.

The constants Am and </>,„ may be determined by Fourier's method

when the initial conditions are known.

Now let n increase indefinitely while R', L' , S' and K' all decrease

indefinitely. Let L = limit L'n/l, and similarly for the others. Let

S.r be the distance between two coils, so that »8.r = /. Measuring x

from the end of the line corresponding to £ = 0, we have k = nx/l

and we get in the limit

:

V= e-v £ Am cos
( pm t - 4>m) sm-j-, (

1

7 )

C=e->"<±B m cos(f>'j- fj cos-^, (18)
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\PLS \ 2LS )

,

K
'

. LK+RS . ./—25". (
2 °)

which are the well-known solutions for the free vibrations of a uni-

form line for long waves.

The differential equation of which (17) is the solution is obtained

by passing to the limit in the difference equation (5). We thus get

d 2 V d 2 V dV

Equations (3) and (4) on passing to the limit give:

For the second problem, that of a periodic impressed electro-

motive force applied to one end of a line, the other end being earthed,

we have to solve equation (5) subject to the conditions:

k = o, Vk = Ec ivt
,

(21)

k = n, Vk = o.

The resulting solution may of course be applied to a closed circuit

with the periodic force Ee iv% introduced in it at any point. After

the free vibrations have been damped out, the solution will be

Vk =(Aa k
-\-Bft

k )Ec^,

\\ litre A and B are arbitrary constants and a and /? are given by

(10). Determining A and 5 by means of (21) we get

sin 2(11 —/•)# ,. . . NK-~ a ,u
(
22

)* sin 2nd v '

1 complex angle defined by (6) and (9) if ¥ is written for Z
1
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in (6). Putting 6 = 6' -\-i6", we get as the real part of (22)

V, = -r^r w, -2* {e^ n -™" COS (vt + 2kff)
* 2 (cosh 4n0 —cos 4?ia )

l

-f e-^ 2n-w cos (vt - 2k&) - e**" cos (vt + 411& (23)

_ 2 k&) - e- 2: ' e " cos (vt - 4?i0' + 2kff)},

which together with

4 (sin 2 6' cosh 2 6" —cos 2 6' sinh 2 0") = v
2 L'S' —R'K' (24)

—4 sin 20' sinh 26" = v(L'K' + #'S") (25)

gives the complete solution.

Now on passing to the limit as before, we can replace sin 6 by 6,

L' ' = Lhx, etc., and we find

26'=— Q8x,

2 6" = P8x,

where

P,Q = \ U*D + !?){?¥ + A-') ± (A5^- i^ZS)}*,
1/2

Wethus have

4116" = 2Pl, 4116' =—2QI,

2k6" = Px, 2k6' = —Qx;

(23) thus reduces to

Ee~ pl

V= Ee~Px cos (vt —Qx) -\ —-. r —757 77771v ^ ' 2(cosh 2PI —cos 2 Qly

x {e Px cos (vt + Qx + <t>)
- e

~Px cos iyt - Qx +<t>)} ,

where

sin 2 Ql
tan<j> =

e-^-cos2Qr

which is the solution for this case as given by Heaviside, 1 except that

leakage is here considered and the real impressed force is E cos vt

instead of E sin vt.

1 " Electrical Papers," Vol. 2, p. 62.

Princeton Unwersity.


